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o The search for life in the 
solar system begins on Earth 
 Extremophiles: 

- How exotic can life on Earth be? 

- What kinds of extreme environments 
can harbor life here? 

- Are there similar environments in 
elsewhere in the Solar System? 

 Subsurface Antarctic Lakes: 

- How similar to subsurface oceans on 
moons in outer Solar System? 

- Can we access it? 

- What technology is needed? 

- Can we access the lake without 
contaminating it? 

Introduction 

M. Inman, Science 310 (5748), 611-612 (2005). 



o How common are subsurface 
water oceans in the outer 
Solar System? 

o Where are they located? 

o What keeps them from 
freezing? 

o Are they stable enough for life 
to form? 

o Can they be accessed from the 
surface? 

Basic Questions 

H. Hussmann, F. Sohl and T. Spohn, Icarus 185 (1), 258-273 (2006). 



Europa 
o Europa was first imaged close up by 

Voyager in 1979 

o Images reminded scientists of ice floes 
in the Arctic/Antarctic leading to 
speculation about a subsurface ocean 

o Young age of the surface further 
suggested recent resurfacing and some 
sort of geologic activity 

o Colour changes on the surface likely 
due to organic molecules breaking 
down in Jupiter’s radiation 

o Weak magnetic moment confirms the 
likelihood of a salt water ocean under 
the surface 



o Tidal heating keeps water ocean 
from freezing 

o Tidal resonance with Io and 
Ganymede maintains eccentricity 
in orbit 

o Obliquity in orbit may also 
generate forces in the ocean that 
contribute substantially to total 
heat budget 

o Salts and ammonia may act as an 
antifreeze 

o Interior and surface may rotate at 
different rates if decoupled by an 
intervening liquid layer 

Europa 



Enceladus 

o Enceladus is a moon of Saturn 

o Material ejected from its surface 
in the form of water ice geysers 
are responsible for forming faint E 
ring 

o Spectroscopic analysis confirms 
the presence of water 

o Like Europa, the surface is 
extremely young and relatively 
crater free 

o However, it is thought to be too 
small to maintain a liquid ocean 

C. J. Hansen, L. W. Esposito, A. I. F. Stewart, B. Meinke, B. Wallis, J. E. Colwell, A. R.  



o Structure of the ocean may be 
substantially different than europan 
ocean 

o There is a distinctive heat anomaly 
under the southern pole marked by the 
tiger stripes 

o It is thought that the water has formed 
a diapir and is being forced to the 
surface by pressure and gravity 

o Unlike the europan ocean, this ocean is 
not believed to be stable in the long 
term, reducing chances of life 

Enceladus 



o Titan and Triton are probably quite 
similar in their water oceans  

o The ocean is thought to be 
sandwiched between low pressure 
ices on top, and high pressure ices 
just above the rocky core 

o Ammonia acting as an antifreeze 
can allow for a deeper ocean 

o Evidence of cryvolcanism on 
surface  

o Evidence that Titan’s core is 
decoupled from surface and rotates 
at a slightly different rate. 

o Electrical field detection 
interpreted as evidence for liquid 
ocean 

 

Titan & Triton 



o Juno is currently headed to Jupiter, 
but its focus is not on Europa 

o Future missions to Europa and 
Titan are currently competing for 
funding and launch dates 

o New Horizons is expected to arrive 
at Pluto in 2015 and may provide 
data on a possible Plutonian ocean 

 New Horizons will also be visiting 
other Kuiper Belt objects (TBD) 

o Life may exist in many more 
places, and in many for forms, 
than we ever previously imagined. 

 

Conclusion 
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